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1. INTRODUCTION

In this paper we shall prove two interpolation theorems about poly­
nomials in several complex variables. Our results will be applied elsewhere to
a problem of Diophantine approximation involving Abelian functions. They
are presented here separately on account of their possible independent
interest.

For a positive integer n we denote by en the complex n-space equipped
with the Euclidean norm i z i defined for z (Zl ,... , ZrI) by

.,
--n ' .

Let P(z) P(Zl , .. " zn) be a polynomial in Zl , ... , Zn with complex coeffi­
cients. In the first half of this paper we consider the question of determining
the general growth of P(z) from its behaviour on a given set Y. More precisely,
let Wl(P, Y') denote the supremum of I P(z)! on a bounded set -'7', and write
gn for the unit polydisc defined by the inequalities

~1 ], ••• , ! Zn i 1.

We shall obtain fairly good estimates for ml(p, .gcn) in terms of ml(p, </)

provided -'7' satisfies certain conditions. Our main result (Theorem A) is
concerned with finite sets Y, although to establish this result we shall also
have to investigate analogous problems for sets of positive measure.

In Appendix 2 of my thesis [5] I proved the following theorem, in which ;JIJ

denotes the unit ball defined by i z i ~ 1. Let //' be a finite subset of /!/J
containing m points with minimum distance between distinct points at least
[j ~ 1, and suppose P(z) is of degree at most d in each variable. Then there
are positive constants C1 , Cz , depending only on n, such that if

(I)
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then the absolute values of the coefficients of P(z) do not exceed

19

(2)

It is not difficult to deduce a similar bound for 9Jl(P, ~n) with, say, 2c2

instead of C2 •

Now in applying this result for large d it is impossible to avoid a factor of
the order dd in (2). Theorem A shows that in favourable circumstances we
can replace this by a factor of the order cad for some Ca independent of d.
Although this is only a slight improvement, it represents a best possible
dependence on d; for example, the polynomial P(ZI , ... , zn) = 2ndZl

d ... znd

satisfies 9Jl(P, 9') ~ 1 for any finite subset 9' of the polydisc I Zi I ~ t
(1 ~ i ~ n). The exact statement of our result is as follows, in which the
separation of a finite set 9' is defined (not quite as in [5]) as the minimum
distance between distinct points of 9'.

THEOREM A. Let 9' be a finite subset of f!J with cardinality m > I and
separation 0 satisfying

for some positive integer d and some positive number e. Then for any poly­
nomial P(z) ofdegree at most d in each variable we have

It follows immediately from Cauchy's integral formula (see Lemma 1
below) that the same inequality holds for the absolute values of the coefficients
of P(z). Also by taking the maximum value of ein this inequality we see that
the factor (c2djo)nd in (2) can be replaced by (c4jd1j2o)nd. Thus if 0 is of the
same order of magnitude as d-1 j2 our claims for the improved dependence
on d are justified.

The proof of Theorem A will be given in section 4, where we shall also
deduce the following corollary.

COROLLARY A. Let 9' be a subset of f!J containing a point within 2-7n

n-nj2d-1j2 of each point of f!J for some positive integer d. Then for any poly­
nomial P(z) ofdegree at most d in each variable we have

This yields, in particular, an explicit form of one of the conjectures on
p. 123 of [5J, according to which there cannot be a zero of P(z) within
csd-1j2 of each point of f!J unless P(z) is identically zero. The other conjecture,
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relating to the points of.q] with real components. was recently established by
Moreau in [7J. together with a refinement exactly analogous to our corollary.

Tn the second half of this paper we apply Theorem A to a special case of the
following problem. Let Y' be a finite subset of C". and let a(s) be complex
numbers indexed by points s of .cr. We seek the simplest polynomial such
that

pes) a(s) (3)

for all s. Again let m and 8 be the cardinality and separation of Y. The very
elementary argument of Lemma 19 of [6J (see also Lemma 2 of Appendix 2
of [4]) shows that there exists a polynomial P(z) of degree at most m - 1 in
each variable satisfying (3). Furthermore, if 8 ~ I and the points s of Y
satisfy! s [ r for some r 2, the coefficients of P(z) can be chosen to have
absolute values at most

(r/8y6 111 max a(s) (4)

for some C6 depending only on n. It is easy to see that the upper bound on the
degree is best possible; for example, if Y' lies in the subspace defined by
Z2 = ... Zn =,' 0 then the problem essentially involves only a single complex
variable. Similarly the estimate (4) cannot in general be substantially im­
proved, at least with regard to the exponent c6m.

However, if 9' is a subset of a certain type of lattice (i.e., a discrete sub­
group of rank 2n) in cn, we shall see (Theorem B below) that in both esti­
mates the number m can sometimes be replaced by mIl". In fact let K' be a
totally real extension of the rational field (j) of degree n, and let K be a
totally imaginary quadratic extension of K'. We can find n embeddings
11 ,... , 1n of K into C which induce distinct embeddings of K' into C. Then
as (X runs over all integers of K, the points in cn of the form

L(ex) = (ex'\ ... , ,x"''')

define a lattice A. Such lattices occur naturally in the theory of complex
multiplication of Abelian varieties (cf. [I 0]). rn section 6 we shall prove the
following theorem, where for brevity we denote by r/-/' the set of points of
the form rs for some fixed r ;? 0 and some s in a set Y'.

THEOREM B. Let A be a lattice in Cn of the type described above. There
exists a positive constant C, depending only on A, with the following property.
Suppose .'/' is a finite subset ofA contained in rfJIJ for some r ;? I. Then for any
complex numbers a(s) indexed by points s of /-/', we can find a polynomial P(z),
ofdegree at most Cr2 in each variable, such that P(s) = a(s) for all sand

iIJ1(P, r~n) ~ Cr " max I a(s) \ .
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If !f is as large as possible it contains m ;:?: C7r
2n points for some positive

C7 independent of r; thus the quantity r2 occurring above can be of order
mIll'. It is natural to suppose that a similar improvement on the simple
estimates of [6] can be obtained for sets !f which satisfy only a weak distribu­
tion condition like that of Theorem A. But at present I cannot find a proof
even when !f is a subset of an arbitrary lattice in en.

For applications we shall need a generalization of Theorem B involving
not only the values of P(z) on :7 but also those of its derivatives. Since this
will be deduced from Theorem B in section 7, we state it as a corollary. For
a nonnegative integral vector m = (m l , ... , m n ) (i.e., with ml , ... , mn non­
negative integers) we put

and

I m [ = m l + ... + mn ,

COROLLARY B. Let A be a lattice in en of the type described above. There
exists a positive constant C, depending only, on A, with the following property.
Suppose !f is a finite subset of A contained in rPjJ for some r ;:?: 1, and k is a
positive integer. Then for any complex numbers a(s, m) indexed by points s
of !f and nonnegative integral vectors m with Im I < k we can find a poly­
nomial P(z), of degree at most Ckr2 in each variable, such that nmp(s) =

a(s, m)for all s, m and

ml(p, r'filn) ~ (Cr'jr)Ckr2 max I a(s, m)jm! I

for any r' ;:?: r.

Note the more general kind of growth inequality appearing in this result.

2. AUXILIARY RESULTS ON POLYNOMIALS

We collect here various types of elementary estimates for polynomials
which will be useful later on. They can be established by induction on the
number n of complex variables by means of appropriate arguments with the
polynomials peal ,... , an-I' z), P(ZI ,... , Zn-l ,a) for fixed al ,... , an-I' a.
Thus we shall give detailed proofs only for n = 1. In this case we denote the
disc fill simply by 9.

LEMMA 1. The coefficients of a polynomial P(z) do not exceed 9Jl(P, 9 n )

in absolute value.
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Proof For n = I let P(z) = PdZd .'- ... + Po for some d; then

where the integral is taken around the unit circle i z = I in the anti-clock­
wise sense. This gives the lemma for n =, I, and the general statement follows
by induction. We could also have used directly the Cauchy integral formula
in en.

LEMMA 2. If P(z) is a polynomial of degree at most d in each variable
then for any r ;? I we have

Proof For n = I we consider the reciprocal polynomial Q(z) = ZdP(Z-l).
If '?f denotes the boundary I z I = I of fil, then by the maximum modulus
principle we have 9Jl(P, rfil) = 9Jl(P, r'?f), and the right-hand side of this is
just rd9Jl(Q, r-1'?f). This number clearly does not exceed rd9Jl(Q, fil) =
rd9Jl(Q, '?f), which in turn is equal to rd9Jl(P, '?f) and so at most rd9Jl(P, fil).
The general lemma follows by induction on n. Once again a direct proof is
possible using the maximum modulus principle in en (see [5 p. 85]).

LEMMA 3. If P(z) is a polynomial of degree at most d in each variable
which has no zeros in filn then

9Jl(P, filn) :(; 23nd I P(O) I .

Proof (cf. [5, Lemma A7, p. 129]). Suppose at first that n = I. If P(z)
does not vanish on fil then the function <p(z) = (P(Z»-l is analytic on fil. It
follows from the maximum modulus principle that for each integer r with
o :(; r :(; d there is a point ar with I aT I = rid such that I <pear) I ;? I <p(O) I .
Hence IPear) I :(; I P(O) I . We now use the Lagrange interpolation formula

d

P{z) = I P(ar)(z - ao) ..• (z - ad)/(ar - ao) •.. (ar - ad), (5)
r~O

where the terms z - ar , ar - ar are omitted in the summand corresponding
to r (0 :(; r :(; d). For any s we have

I ar - as I ;? I I ar I - I as I I = I r - slid,

whence

n I ar - as I ;? r! (d - r)! d-d.
so;kr
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Also if I z I ~ 1 we find that the numerators in (5) satisfy

d

I(z - ao) ... (z - ad)i ~ TI (I --, rid) = d~d(2d)!ld!.
r=l

Hence (5) yields

9J1(P,.@) ~ IP(O) Ie:) t (~) ~; 23d IP(O) I·
r~O

23

This proves Lemma 3 for n = 1, and the general assertion follows by induc­
tion on n, since for fixed a1 ,... , an~l ,a in.@, the polynomials P(a1 ,... , an-1 ,z),
P(Zl ,... , Zn-1 , a) do not vanish on .@, .@n-1 respectively. Note that if P(z)
has no zeros in a polydisc :7 of radius r centred at s, this result implies
that IDl(P, :7) ~ 23nd I pes) I independently of r.

3. SETS OF POSITIVE MEASURE

Let :7 be a subset of .@n with positive Lebesgue measure. In this section we
obtain some estimates for the growth of a polynomial P(z) in terms of
9Jl(P, :7). In the case of a single complex variable such results go back at
least to P6lya (see below), and related inequalities for several complex
variables occur in work of Bishop [1] (see also [8, p. 133]).

Let fLn denote the usual Lebesgue measure in en, so that

and write fL = fL1. P6lya [9] proved the following theorem. If P(z) is a poly­
nomial of degree d in a single complex variable with leading coefficient
unity, then for any M ;?- 0 the set of points z satisfying 1 P(z) I ~ M has
measure at most -rrM2fd. We shall deduce the next lemma from this result.

LEMMA 4. Let P(z) be a polynomial ofdegree at most d in a single complex
variable and let :7 be a subset of.@ ofpositive measure a. Then

9Jl(P, .@) ~ 24da-dj29Jl(P, :7).

Proof After replacing :7 by the subset of.@ on which IP(z) I~ 9Jl(P, :7),
we may suppose that :7 is closed. We assume P =1= O. Let a be any point
with I a I = 2 and pea) =1= 0, and write

Q(z) = Pea + 3z), R(z) = zdQ(z-l)IP(a),

so that R(z) has exact degree d and leading coefficient unity. Correspondingly
let.'!T be the set of points of the form Ms - a) for some s in:7, and denote by
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"?I the set of points of the form t~l for some t in .Y. Then ~Jl(Q, .'1)
= ~Jl(P, .'1'). Also t .j for all t in .Y, so that

ml(R, 1/) 3d9Jl(Q, .'1)'1 P(a) (6)

It follows from P6lya's theorem that [L(J1I) 1Til"f2/d where M is the right-
hand side of (6). We proceed to prove that [L(Oll) ;? [L(Y).

Since :1", and therefore Y, is closed, so are the sections Y(r) of Y on
which I z I = r. If mer) is the angular measure of Y(r), then mer) =c 0 for
r < t and l' > 1, and Fubini's theorem for indicator functions (see [II,
p. 87]) shows that

1

[L(.Y) = r m(r) dr.
"1/3

The set ~ is also closed, and for I l' 'S; 3 the analogous section 011(1') is
simply the magnification of Y(r~l) by the factor 1'2, Thus

3

[L(J?/) = It r2m(r-1
) dr.

Changing the variable using Proposition 3 [II, p. 104], we find that

1 1

[L(Olf) = t3 r-4m(r) dr ;? .C mer) dr = [L(Y).

Next it is clear that [L(Y) = t[L(g), and so [L(UlI) ;? tao Comparison of
this with the upper bound for [L(0l1) obtained above yields M ;:? 3-d1T-dj2adj2,
or

Hence this inequality holds for all a with I a I = 2, and Lemma 4 follows on
appealing to the maximum modulus principle (and noting that the ancient
Egyptian approximation 256/81 for 7T errs in excess).

Next we generalize this result to several complex variables.

LEMMA 5. Let P(z) be a polynomial of degree at most d in each variable
and let g be a subset of!!fin ofpositive measure a. Then

Proof As usual the proof is by induction on n, the case n = I being the
previous lemma. Assume the result true with n replaced by n - I for some
n ;:? 2, and let P, d, g, a be as above. As in the proof of Lemma 4, we can
assume that g is closed. For each z in !!fi, let m(z) be the measure of the set



INTERPOLATION IN SEVERAL VARIABLES 25

of points (al ,... , an-I) in gn-l such that (al ,... , an-I' z) lies in Y'. Then
m(z) ~( 1T n - l and by Fubini's theorem

(T = f. m(z) dJL.
!Z

We deduce that the set ff of z in g for which m(z) ;? a/21T has measure T at
least a/21Tn- l . For we have m(z) < a/21T on the complement ff' of ff in g,
and so

Hence for any t in ff the polynomial Q(ZI ,... , Zn-l) = P(ZI ,... , Zn-l , t)
satisfies

[ Q(ZI ,... , Znl) I :'( ml(p, .'1')

on a set in gn-l of measure at least a/21T. By our induction hypothesis

ml(Q, gn-I) :'( 24(rHj
2

d (a/21T)-(n~1)dj2 9R(P, Y').

In other words, for any fixed (al , ... , an-I) in gn-l the polynomial R(z) =

peal ,... , an-I, z) satisfies

WI(R, ff) ::~ 24 (n-l)2d (a/21T)-(n-l)dj2 Wl(P, //).

We deduce from Lemma 4 that

Thus the same upper bound holds for Wl(P, .qcn), and this completes the
proof of Lemma 5.

By slightly more elaborate arguments the estimate of this lemma can be
improved with respect to its dependence on both n and a, and indeed best
possible results can be obtained (see [12]). We do not go into this now,
however, because our applications involve essentially constant values of
these parameters.

4. PROOF OF THEOREM A AND COROLLARY A

Let P(z) be a polynomial of total degree D and consider the divisor in !Cn
defined by P(z) = O. We can construct a (2n - 2)-dimensional Hausdorff
measure on this divisor which takes multiplicities into account; for a in !Cn
and r ;? 0 let us write the corresponding measure in the ball I z - a I ~ r in
the form

1Tn-Ir2n-2(9(a, r)/(n - I)!
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for some 8(a, r). Then it is known that the function 8(a, r) has the following
properties;

(i) 8(a, r) is monotone nondecreasing in r

(ii) 8(a) = Iimr-o 8(a, r) is the order of the zero of P(z) at z = a

(iii) limr~oo 8(a, r) D independently of a.

For references see Bombieri and Lang [2].
We now prove Theorem A. Let Y' be a finite subset of ,UjJ consisting of

m > 1 points Sl , ... , Sm with separation 0 ~ 2 satisfying

for some integer d I and some real number e> 0. Furthermore let P(z)
be a polynomial of degree at most d in each variable. Consider the
balls :28i defined by 'z - Si I ~lo (I ~ i ~ m), and suppose exactly 1~ m
of these contain a zero of P(z), without loss of generality those with I ~ i ~ I.
If t i is a zero of P(z) in :28; (I ~ i ~ I), then the balls Iz - t; ~ -EO are
disjoint and contained in 2:28. We proceed to estimate 8(0, 2) in two ways. On
the one hand, by (i) and (iii) we have, since D ~ nd,

8(0, 2) ~ nd.

On the other hand, from the measure-theoretic definition of the 8-function
we have

~

22n- 28(0 2)" '" (clo)2n-2 '" 8(t .10), ::;::::.-- 5 L l' 5 ,

i=l

and using (i) and (ii) we see that this is at least

I

(ior-2I 8(ti ) ?: l(i8)2n-2.
i=-l

We conclude that

I:::;; (IO/o)2n-2 nd < tm.

This means that exactly m - I > tm of the balls :28i do not contain a zero of
P(z). Now the polydisc f!fii of radius 0/5n1 / 2 centred at Si lies completely in:28i ,

whence for each i > 1the polynomial P(z) has no zeros in f!fii , and so Lemma
3 implies that

9Jl(P, f!fii) :::;; 23nd I P(sJ , :::;; 23nd9Jl(P, Y) (l < i :::;; m).
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But the total measure of the sets ~i (l < i :'( m) is

and they all lie in 2/1&. Hence the polynomial Q(z) = P(2z) satisfies

27

for a subset ,r of~" of measure at least ,}1O-2"7T"B2, Applying Lemma 5, we
deduce that

Hence

(on noting this time that the Roman approximation 3t for 7T errs in defect).
This completes the proof of Theorem A.

To deduce Corollary A we follow [5 p. 127]. Suppose Y is a subset of f!jj

containing a point within 8 :'( 2-7nn-n/2d-l/2 of each point of f!jj, and let P(z)
be a polynomial of degree at most d in each variable. Select an integer k
satisfying

and consider the points

as fl.l , VI '"'' fl.", V" range over all nonnegative integers not exceeding k/2n1/2.

There are

such points, and they all lie in 2-I / 2f!jj. For each a let sea) be a point of Y
nearest a. Since k-1 - 28 :;:: 8, the set ::I" of points sea) has cardinality m
and separation at least 0, and it is clearly contained in (JjJ. Furthermore we
have

with B = 2-3nn-n . Hence we may apply Theorem A to the polynomial P(z)
on the set .'/"', and we conclude that

as required.
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5. LEMMAS ON ALGEBRAIC NUMBERS

We prove Theorem B in the next section. We shall need some elementary
facts about algebraic numbers which it is convenient to record separately in
this section.

Let K be a totally imaginary quadratic extension of a totally real field K',
with

[K: OJ 2[K' : OJ O~ 2n,

and choose embeddings 1f1 ,... , 1fn of K into iC that induce distinct embeddings
of K' into iC. Thus the conjugates of any ex in K are given by ex'"', ... , a,"n and
their complex conjugates. Our first lemma deals with 'arithmetic progres­
sions' in the ring I of integers of K, that is, congruence classes modulo a
fixed element of I.

LEMMA 6. Let 7T be a prime element of K, and let fJ1 ,... , fJl be representa­
tives of the nonzero congruence classes of I modulo 7T. If'ill denotes one of these
congruence classes then the sets fJ11 'ill, ... , fJi1'ill between them contain all
elements of I not divisible by 7T.

Proof Suppose 'ill consists of all elements of I congruent to 0: modulo 7T,

so that ex is not divisible by 7T, and let 'Y be any element of I not divisible
by 7T. Since the nonzero congruence classes of I form a multiplicative group,
there exists fJi with fJi'Y congruent to ex modulo 7T, whence 'Y lies in fJi1'ilL

LEMMA 7. For any Ll > 0 there exists a prime element of K all of whose
conjugates exceed Ll in absolute value.

Proof For a nonzero element (Y in Tlet

DCx) = (log (Y'"' , ••• , log I (Y'"n !)

be a point of the real space IR n . Because K has no real embeddings, this gives
rise to the well-known Dirichlet map associated with K. The image of the
group of units of I is a lattice in the subspace of IRn consisting of all (Xl , ... , x n)
with Xl +- ... --i- X n == O. It follows by simple geometry that if YJ is a unit with
D(YJ) nearest to D(o:) we have for all i,j

, log! 7T'"' ! - log 7T'"; ! :S: c (7)

with 7T = aYJ-1 and some constant c depending only on K.
Now there are infinitely many principal prime ideals p in K (see [3, p. 214]),

and so we can select one with norm at least e2cnLl2n. Let (Y be a generator of
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p and let YJ be a unit with D(YJ) nearest to D(ex). Then 7T = exYJ-I is a prime
element of K and we deduce from (7) that for any i

Since this norm is no smaller than e2cnL12", we find that 17T"'i I :): L1 and this
establishes Lemma 7.

6. PROOF OF THEOREM B

With the notation of the preceding section, we associate to each ex in K the
complex vector

The image A = L(I) of I is then a lattice in e", because it is discrete and of
rank 2n; in fact for nonzero ex in I we have

For r :): 0 denote by A(r) the subset of A lying in the ball rf:!4; that is, the set
of points A in A with I A I ~ r. Thus A(r) is the origin if r < 1. The following
lemma contains the most important part of the proof of Theorem B.

LEMMA 8. There exists a positive constant c, depending only on A, with
the following property. For any r :): 1 there is a polynomial P(z), of degree at
most cr2 in each variable, which vanishes at all nonzero points of A(r) but
satisfies

P(O) = 1,

Proof We shall denote by CI , ... positive constants depending only on A.
Let 7T be a prime element of K, to be specified later, and let a be the minimum
of the absolute values of its conjugates. Select representatives ~I , ••• , ~l of the
nonzero congruence classes of I modulo 7T, and let b be the maximum of
the absolute values of all their conjugates.

For brevity we shall say that a point A of A is divisible by 7T if A = L(a) for
some ex divisible by 7T. For any r :): 1 consider the set Y of points of A(2br)
divisible by 7T. Since I L(ex) ! ~ 2br implies

! L(7T-Ia) I ~ a-I! L(ex) I ~ 2a-Ibr

we see that .C/' contains at most cl (a- Ibr)2" points. Hence if d ~ c2(a- Ibr)2 is
the greatest integer not exceeding c~!"(a-Ibr)2, we can choose the (d + 1)" >
cl (a- Ibr)2n coefficients of a polynomial Q(z) of degree at most d in each
variable such that Q(z) vanishes on y J but is not identically zero.
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We now try to apply Theorem A to the polynomial Q(brz) on the subset
(br)-l A(br) of gg. Clearly this set contains In clbr)2" points with separa-
tion 8 ;:?c clbr)-l. It follows that if

then indeed Theorem A is applicable in these circumstances. In view of this,
we use Lemma 7 to fix 7T as a prime element of smallest height such that
a ;:?c ('5 and a > 1. We deduce that

Wl(Q, br!?/n) .s.; c;2Wl(Q, A(br».

Since Q(z) now has degree at most ('7r2 in each variable we obtain at once
using Lemma 2

In other words, there exists a point -Ao in A(br) such that

in particular, Q(-Ao) # 0 so that Ao is not divisible by 7T.

It follows that the polynomial

satisfies

~)l(R, br!2n) ~..:: ('~2

and has the same degree as Q(z). Furthermore we have R(O) I and by
construction R(z) vanishes on the set of points of the form Ao + A for some
A in A(2br) divisible by 7T. Now write Ao = L(rxo) and let 9( be the arithmetic
progression consisting of all elements of I congruent to rxo modulo 7T. Since
I Ao I ~ br, we find that R(z) vanishes at all points in brgg of the set L('2().

Next we put
I

S(Zl ,... , zn) = TI R(~~lZl ,... , ~~"zn)
i=l

and deduce from the properties of R(z) the following properties of S(z). It has
degree at most ('9r2 in each variable, and, because (~tlZ1 ,... , ~tnzn) lies in
br[£n whenever (Zl , ... , zn) lies in r[£n, we have

ml(S, r[£n) ~ (Wi(R, br!2 n»1 ~ ('r~.

Also S(O) = 1 and for each i the polynomial S(z) vanishes at all points L(y)
of L(~i191)with (!3t 1ywl, ... , !3;'ny"'n) in brgg (J ~ i ~ I). Tn particular it vanishes
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at all points in rflg of the sets L(fJ11'l1), ... , L(f3l1'lf). Hence from Lemma 6 the
polynomial S(z) vanishes on all points of A(r) not divisible by 7T.

Finally we extend the range of zeros to all nonzero points of A(r).
Remembering that the foregoing arguments depend on the parameter r, we
rename the polynomial S(z) as S(z; r). Since a > 1, there exists a greatest
integer K with aK ~ r, and for each nonnegative integer k ~ K we put

S ( ) - S« "'1)-k (",,,)-k. -k)kZ - 7T Z1, ... ,7T Zn,a r.

We proceed to verify that the polynomial

satisfies the conditions of Lemma 8. Its degree in each variable does not
exceed

Furthermore, if (Z1 ,... , zn) lies in r!!2n then «7T"'1)-k Z1 , ..• , (7T"'n)-k zn) lies in
a-kr!!2", so that

Thus a similar calculation yields

Also P(O) = 1. To verify the assertion about the zeros of P(z) we note that
any nonzero A in A(r) can be written as L(7Tkex) for some ex in I not divisible
by 7T and some nonnegative integer k. Since

1 ~ I L(ex) I ~ a-kr,

we must have k ~ K and consequently S(z; a-kr) vanishes at L(ex). Hence
Sk(Z) vanishes at A = L(7Tkex) and we conclude that P(z) also vanishes at A.

This completes the proof of Lemma 8.
The proof of Theorem B is now immediate. Suppose Y is a subset of A(r)

for some r ? 1, and the a(s) are complex numbers indexed by points s of Y.
We use Lemma 8 to construct a polynomial Q(z) , of degree at most 4cr2 in
each variable, which vanishes at all nonzero points of A(2r) but satisfies

Q(O) = I,

Then clearly the sum

P(z) = L a(s) Q(z - s),

taken over all s in Y, fulfills the conditions of Theorem B.
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7. PROOF OF COROLLARY B

In this section we shall deduce Corollary B from the following lemma.

LEMMA 9. There exists a positive constant c, depending only on.l1, with the
following property. For a positive integer k let a(m) be complex numbers
indexed by non-negative integral vectors m with! m ! < k. Then for any I' I
there is a polynomial P(z), of degree at most ckr2 in each variable, which has a
zero of order at least k at all nonzero points of .11(1') but satisfies DmP(O) =­
a(m) (I m I < k) and

9Jl(P, rf2n) ~-:; C
hr2 max i a(m)/m! I .

Proof If m = (m! ,... , mn) let zm = z~n, ... z~'n and form the sum

A(z) = I a(m) zm/m!

taken over all nonnegative integral vectors m with I m 1 < k. We use Lemma 8
to construct a polynomial Q(z) with Q(O) = I which vanishes at all nonzero
points of.11(1'). Then the rational function (Q(z))-/c A(z) has a Taylor expansion
about the origin. If R(z) denotes the sum of the terms of total degree less
than k in this expansion, we claim that the polynomial P(z) = (Q(z))lc R(z)
satisfies the conditions of the present lemma. It clearly has a zero of order at
least k at all nonzero points of .11(1'). Also, since

(Q(z))-/c A(z) = R(z) + w(z)

for some power series w(z) with a zero of order at least k at the origin, we
have

P(z) = A(z) - (Q(z))lc w(z),

and so Dmp(o) = DmA(O) = a(m) whenever 1m 1< k. We proceed to
estimate IDl(P, rf2n ) by means of majorization techniques.

For two formal power series

g(z) = Lp(m) zm, h(z) = L q(m) zm

with q(m) real, we write g(z) ~ h(z) if 1 p(m) I ~ q(m) for all nonnegative
integral vectors m. If h(z) converges on rf2n these inequalities plainly imply
that Ig(z) I ~ h(r, ... , 1') on rf2n .

Now if A = max 1 a(m)jm! ! we have

where f/c(z) is the sum L zm taken over all non-negative integral vectors m
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with Im I < k. Further, from Lemma 1 the coefficients of Q(rz) do not
exceed

M = max(I, 9Jl(Q, r~n))

in absolute value. This gives

Q(rz) - 1 ~ M(j(z) - 1)

where f(z) is the sum L zm taken over all nonnegative integral vectors m;
that is,

It follows that

(Q(rz))-k ~ (l - M(j(z) -l))-k ~ I (k +! - 1) Mi(j(Z) -l)i.
i~O ]

We immediately obtain a majorizing series for (Q(rz))-k A(rz), and by
truncating we find that

On specializing to points of t~n we get the estimate

Now

and the sum over j does not exceed

thus from Lemma 2 we deduce that

We complete the proof of Lemma 9 by using the estimate of Lemma 8 for the
number 9Jl(Q, r~n) in the definition of M.

Finally Corollary B follows from Lemma 9 just as Theorem B follows
from Lemma 8. Let r ~ 1, k ~ 1, and let a(s, m) be complex numbers
indexed by elements s of a subset g' of A(r) and non-negative integral
vectors m with I m I < k. We can then construct for each s in g' a poly­
nomial P.(z) satisfying Dmps(O) = a(s, m) with zeros of order at least k at all
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nonzero points of "1(2r), and we take P(z)
Dmp(s) = a(s, m) for all s, m, and

L Ps(z- s). This gIves

~Jl(P, r9") cl.I" max a(s, m)/m!

Since the degree of P(z) is at most ckr2, the more general estimate

~Jl(P, r';)'II) (Cr'lr)CiI"max a(s, m)/m!

for r' r can be obtained by applying Lemma 2 to the polynomial P(rz) on
the polydisc (r'lr) !?/". This concludes the proof of Corollary B.
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